ncbi.nlm.nih.gov/pubmed/25913832
Acute stress has been demonstrated to alter sensory gating processes, measured by the prepulse inhibition of the startle response (PPI). It is well known that brain and plasma levels of the neurosteroid allopregnanolone (ALLO) increase after acute environmental stress, fact that has been considered a homeostatic mechanism in restoring normal function following stress. Thus, it is of great interest to study the contribution of stress-altered plasma ALLO levels on PPI function. For this purpose, animals were injected with finasteride, an ALLO synthesis inhibitor, and submitted to swim stress before PPI testing. In order to obtain ALLO plasma levels, a separate set of animals that followed the same experimental procedure was used. We hypothesize that the blockade of ALLO production in response to stress can increase the stress-induced PPI disruption. In accordance with other authors, our results indicate that acute swim stress disrupted the normal PPI evolution (increase) related to the increase in prepulse intensities, and also decreased PPI at the highest prepulse intensity level (15db above background). Finasteride potentiated the PPI decrease induced by swim stress in the intermediate prepulse intensity (10db above background). As expected, plasma ALLO levels were increased in stressed animals and this increase was neutralized by prior finasteride administration. These results indicate that the neutralization of the physiological plasma ALLO levels increase after acute stress potentiates stress-induced PPI disruption. This data suggests that alterations in homeostatic ALLO synthesis mechanism may be linked to some neuropsychiatric disorders related to stress, such as anxiety/depression disorders.