An incredible advancement. One of the first de novo proteins, and has a broad potential.
LOCKR can be “programmed” to modify gene expression, redirect cellular traffic, degrade specific proteins, and control protein binding interactions. The researchers also use LOCKR to build new biological circuits that behave like autonomous sensors. These circuits detect cues from the cell’s internal or external environment and respond by making changes to the cell. This is akin to the way a thermostat senses ambient temperature and directs a heating or cooling system to shut itself off as soon as a desired temperature is reached.
“In the same way that integrated circuits enabled the explosion of the computer chip industry, these versatile and dynamic biological switches could soon unlock precise control over the behavior of living cells and, ultimately, our health.”
Having no counterpart in the natural world, LOCKR stands apart from every tool of the biotech trade, including recent technologies like optogenetics and CRISPR. While its predecessors were discovered in nature and then retooled for use in labs, industry, or medicine, LOCKR is among the first biotechnology tools entirely conceived of and built by humans.
The July Nature papers reporting these findings are titled “De novo design of bioactive protein switches” and “Modular and tunable biological feedback control using a de novo protein switch.”