Activation of the Human Androgen Receptor through a Protein Kinase A Signaling Pathway

jbc.org/cgi/content/abstract/271/33/19900

From the Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030

Aberrant activation of the androgen receptor through signaling pathways independent of androgen may be responsible for the progression of prostate tumors to the rapidly proliferating androgen-independent state. In this study, the effects of protein kinase A modulators on human androgen receptor activity were tested. Using an adenoviral DNA delivery system, we demonstrate that the androgen receptor can be activated by a protein kinase A activator, forskolin, in the absence of androgen when androgen receptor is co-transfected into monkey kidney CV1 cells or human prostate PC-3 cells with androgen-responsive reporters. Immunoblotting reveals that there is no significant change in androgen receptor protein level following forskolin treatment, suggesting that the enhanced activity is due to activation of the receptor. This activation can be blocked by a protein kinase A inhibitor peptide. Two potent anti-androgens, casodex and flutamide, can significantly reduce this activation, confirming that the ligand-independent pathway is an androgen receptor-mediated phenomenon. An intact DNA binding domain of the receptor is critical for this alternate signaling pathway since mutants with reduced DNA binding ability are inactive. The phosphorylation status of the androgen receptor or associated proteins may critically modulate receptor activity and should be considered when designing improved approaches to prostate cancer therapy.